Venus flytrap (Dionaea muscipula) – Video

4 years ago by in Featured, Systematics and Taxonomy, Systematics and Taxonomy

The Venus flytrap (also Venus’s flytrap or Venus’ flytrap), Dionaea muscipula, is a carnivorous plant native to subtropical wetlands on the East Coast of the United States. It catches its prey—chiefly insects and arachnids— with a trapping structure formed by the terminal portion of each of the plant’s leaves and is triggered by tiny hairs on their inner surfaces. When an insect or spider crawling along the leaves contacts a hair, the trap closes if a different hair is contacted within twenty seconds of the first strike. The requirement of redundant triggering in this mechanism serves as a safeguard against a waste of energy in trapping objects with no nutritional value.

Dionaea is a monotypic genus closely related to the waterwheel plant and sundews, all of which belong to the family Droseraceae.

 

Description:

The Venus flytrap is a small plant whose structure can be described as a rosette of four to seven leaves, which arise from a short subterranean stem that is actually a bulb-like object. Each stem reaches a maximum size of about three to ten centimeters, depending on the time of year;[2] longer leaves with robust traps are usually formed after flowering. Flytraps that have more than 7 leaves are colonies formed by rosettes that have divided beneath the ground.

Dionaea, flytrap, in closeupThe leaf blade is divided into two regions: a flat, heart-shaped photosynthesis-capable petiole, and a pair of terminal lobes hinged at the midrib, forming the trap which is the true leaf. The upper surface of these lobes contains red anthocyanin pigments and its edges secrete mucilage. The lobes exhibit rapid plant movements, snapping shut when stimulated by prey. The trapping mechanism is tripped when prey contacts one of the three hair-like trichomes that are found on the upper surface of each of the lobes. The trapping mechanism is so specialized that it can distinguish between living prey and non-prey stimuli such as falling raindrops; two trigger hairs must be touched in succession within 20 seconds of each other or one hair touched twice in rapid succession, whereupon the lobes of the trap will snap shut in about one-tenth of a second.The edges of the lobes are fringed by stiff hair-like protrusions or cilia, which mesh together and prevent large prey from escaping. (These protrusions, and the trigger hairs, also known as sensitive hairs, are probably homologous with the tentacles found in this plant’s close relatives, the sundews.) Scientists are currently unsure about the evolutionary history of the Venus flytrap; however scientists have made hypotheses that the flytrap evolved from Drosera (sundews).

The holes in the meshwork allow small prey to escape, presumably because the benefit that would be obtained from them would be less than the cost of digesting them. If the prey is too small and escapes, the trap will reopen within 12 hours. If the prey moves around in the trap, it tightens and digestion begins more quickly.

Speed of closing can vary depending on the amount of humidity, light, size of prey, and general growing conditions. The speed with which traps close can be used as an indicator of a plant’s general health. Venus flytraps are not as humidity-dependent as are some other carnivorous plants, such as Nepenthes,Cephalotus, most Heliamphora, and some Drosera.

The Venus flytrap exhibits variations in petiole shape and length and whether the leaf lies flat on the ground or extends up at an angle of about 40–60 degrees. The four major forms are: ‘typica’, the most common, with broad decumbent petioles; ‘erecta’, with leaves at a 45-degree angle; ‘linearis’, with narrow petioles and leaves at 45 degrees; and ‘filiformis’, with extremely narrow or linear petioles. Except for ‘filiformis’, all of these can be stages in leaf production of any plant depending on season (decumbent in summer versus short versus semi-erect in spring), length of photoperiod (long petioles in spring versus short in summer), and intensity of light (wide petioles in low light intensity versus narrow in brighter light).

When grown from seed, plants take around four to five years to reach maturity and will live for 20 to 30 years if cultivated in the right conditions.

Carnivory:

Most carnivorous plants selectively feed on specific prey. This selection is due to the available prey and the type of trap used by the organism. With the Venus flytrap, prey carnivorous plant venus with crane fly preyis limited to beetles, spiders and other crawling arthropods. In fact, the Dionaea diet is 33% ants, 30% spiders, 10% beetles, and 10% grasshoppers, with fewer than 5% flying insects. Given that Dionaea evolved from an ancestral form of Drosera (carnivorous plants that use a sticky trap instead of a snap trap) the reason for this evolutionary branching becomes clear. Whilst Drosera consume smaller, aerial insects,Dionaea consume larger terrestrial bugs. From these larger bugs, Dionaea are able to extract more nutrients. This gives Dionaea an evolutionary advantage over their ancestral sticky trap form.

The Venus flytrap is one of a very small group of plants capable of rapid movement, such as Mimosa, the Telegraph plant, sundews and bladderworts.

The mechanism by which the trap snaps shut involves a complex interaction between elasticity, turgor and growth. In the open, untripped state, the lobes are convex (bent outwards), but in the closed state, the lobes are concave (forming a cavity). It is the rapid flipping of this bistable state that closes the trap, but the mechanism by which this occurs is still poorly understood. When the trigger hairs are stimulated, an action potential (mostly involving calcium ions—see calcium in biology) is generated, which propagates across the lobes and stimulates cells in the lobes and in the midrib between them. It is hypothesized that there is a threshold of ion buildup for the Venus flytrap to react to stimulation.The acid growth theory states that individual cells in the outer layers of the lobes and midrib rapidly move 1H+ (hydrogen ions) into their cell walls, lowering the pH and loosening the extracellular components, which allows them to swell rapidly by osmosis, thus elongating and changing the shape of the trap lobe. Alternatively, cells in the inner layers of the lobes and midrib may rapidly secrete other ions, allowing water to follow by osmosis, and the cells to collapse. Both of these mechanisms may play a role and have some experimental evidence to support them.

If the prey is unable to escape, it will continue to stimulate the inner surface of the lobes, and this causes a further growth response that forces the edges of the lobes together, eventually sealing the trap hermetically and forming a ‘stomach’ in which digestion occurs. Digestion is catalysed byenzymes secreted by glands in the lobes.

Oxidative protein modification is likely to be a predigestive mechanism of the Dionaea muscipula. Aqueous leaf extracts have been found to contain quinones such as the naphthoquinoneplumbagin that couples to different NADH-dependent diaphorases to produce superoxide and hydrogen peroxide upon autoxidation. Such oxidative modification could rupture animal cell membranes. Plumbagin is known to induce apoptosis, associated with the regulation of Bcl-2 family of proteins. When the Dionaea extracts were preincubated with diaphorases and NADH in the presence of serum albumin (SA), subsequent tryptic digestion of SA was facilitated. Since the secretory glands of Droseraceae contain proteases and possibly other degradative enzymes, it may be that the presence of oxygen-activating redox cofactors function as extracellular predigestive oxidants to render membrane-bound proteins of the prey (insects) more susceptible to proteolytic attacks.

Digestion takes about ten days, after which the prey is reduced to a husk of chitin. The trap then reopens, and is ready for reuse.

 

 

The author didnt add any Information to his profile yet