“COMMUNITY INTERACTION – PREDATION” and “PREDATORS” – VIDEO

4 years ago by in Ecology, Ecology, Evolution, Evolution, Systematics and Taxonomy

In ecology, predation describes a biological interaction where a predator (an animal that is hunting) feeds on its prey (the animal that is attacked). Predators may or may not kill their prey prior to feeding on them, but the act of predation often results in the death of its prey and the eventual absorption of the prey’s tissue through consumption. Other categories of consumption are herbivory (eating parts of plants), mycophagy (eating parts of fungi) and detritivory, the consumption of dead organic material (detritus). All these consumption categories fall under the rubric of consumer-resource systems. It can often be difficult to separate various types of feeding behaviors. For example, some parasitic species prey on a host organism and then lay their eggs on it for their offspring to feed on it while it continues to live or on its decaying corpse after it has died. The key characteristic of predation however is the predator’s direct impact on the prey population. On the other hand, detritivores simply eat dead organic material arising from the decay of dead individuals and have no direct impact on the “donor” organism(s).

Selective pressures imposed on one another often leads to an evolutionary arms race between prey and predator, resulting in various antipredator adaptations. Ways of classifying predation surveyed here include grouping by trophic level or diet, by specialization, and by the nature of the predator’s interaction with prey.

FUNCTIONAL CLASSIFICATION

Classification of predators by the extent to which they feed on and interact with their prey is one way ecologists may wish to categorize the different types of predation. Instead of focusing on what they eat, this system classifies predators by the way in which they eat, and the general nature of the interaction between predator and prey species. Two factors are considered here: How close the predator and prey are physically (in the latter two cases the term prey may be replaced with host). Additionally, whether or not the prey are directly killed by the predator is considered, with true predation and parasitoidism involving certain death.

True predation

A true predator can commonly be known as one which kills and eats another living thing. Whereas other types of predator all harm their prey in some way, this form certainly kills them. Predators may hunt actively for prey, or sit and wait for prey to approach within striking distance, as in ambush predators. Some predators kill large prey and dismember or chew it prior to eating it, such as a jaguar or a human; others may eat their (usually much smaller) prey whole, as does a bottlenose dolphin swallowing a fish, or a snake, duck or stork swallowing a frog. Some animals that kill both large and small prey for their size (domestic cats and dogs are prime examples) may do either depending upon the circumstances; either would devour a large insect whole but dismember a rabbit. Some predation entails venom which subdues a prey creature before the predator ingests the prey by killing, which the box jellyfishdoes, or disabling it, found in the behavior of the cone shell. In some cases, the venom, as in rattlesnakes and some spiders, contributes to the digestion of the prey item even before the predator begins eating. In other cases, the prey organism may die in the mouth or digestive system of the predator. Baleen whales, for example, eat millions of microscopic plankton at once, the prey being broken down well after entering the whale. Seed predation and egg predation are other forms of true predation, as seeds and eggs represent potential organisms. Predators of this classification need not eat prey entirely. For example, some predators cannot digest bones, while others can. Some may eat only part of an organism, as in grazing (see below), but still consistently cause its direct death.

Spider_predation_01Grazing

Grazing organisms may also kill their prey species, but this is seldom the case. While some herbivores like zooplankton live on unicellular phytoplankton and have no choice but to kill their prey, many only eat a small part of the plant. Grazing livestock may pull some grass out at the roots, but most is simply grazed upon, allowing the plant to regrow once again. Kelp is frequently grazed in subtidal kelp forests, but regrows at the base of the blade continuously to cope with browsing pressure. Animals may also be ‘grazed’ upon; female mosquitos land on hosts briefly to gain sufficient proteins for the development of their offspring. Starfish may be grazed on, being capable of regenerating lost arms.

Parasitism

Parasites can at times be difficult to distinguish from grazers. Their feeding behavior is similar in many ways, however they are noted for their close association with their host species. While a grazing species such as an elephant may travel many kilometers in a single day, grazing on many plants in the process, parasites form very close associations with their hosts, usually having only one or at most a few in their lifetime. This close living arrangement may be described by the term symbiosis, “living together”, but unlike mutualism the association significantly reduces thefitness of the host. Parasitic organisms range from the macroscopic mistletoe, a parasitic plant, to microscopic internal parasites such as cholera. Some species however have more loose associations with their hosts. Lepidoptera (butterfly and moth) larvae may feed parasitically on only a single plant, or they may graze on several nearby plants. It is therefore wise to treat this classification system as a continuum rather than four isolated forms.

Parasitoidism

Main article: Parasitoid

Parasitoids are organisms living in or on their host and feeding directly upon it, eventually leading to its death. They are much like parasites in their close symbiotic relationship with their host or hosts. Like the previous two classifications parasitoid predators do not kill their hosts instantly. However, unlike parasites, they are very similar to true predators in that the fate of their prey is quite inevitably death. A well-known example of a parasitoids are the ichneumon wasps, solitary insects living a free life as an adult, then laying eggs on or in another species such as a caterpillar. Its larva(e) feed on the growing host causing it little harm at first, but soon devouring the internal organs until finally destroying the nervous system resulting in prey death. By this stage the young wasp(s) are developed sufficiently to move to the next stage in their life cycle. Though limited mainly to the insect order Hymenoptera, Diptera and Coleoptera parasitoids make up as much as 10% of all insect species.

Degree of specialization

Among predators there is a large degree of specialization. Many predators specialize in hunting only one species of prey. Others are more opportunistic and will kill and eat almost anything (examples: humans, leopards, and dogs). The specialists are usually particularly well suited to capturing their preferred prey. The prey in turn, are often equally suited to escape that predator. This is called an evolutionary arms race and tends to keep the populations of both species in equilibrium. Some predators specialize in certain classes of prey, not just single species. Some will switch to other prey (with varying degrees of success) when the preferred target is extremely scarce, and they may also resort to scavenging or a herbivorous diet if possible.[citation needed]

Trophic levelLion_Male_Eating_Rhino_IMG_3419

Predators are often another organism’s prey, and likewise prey are often predators. Though blue jays prey on insects, they may in turn be prey for cats and snakes, and snakes may be the prey of hawks. One way of classifying predators is bytrophic level. Organisms which feed on autotrophs, the producers of the trophic pyramid, are known as herbivores or primary consumers; those that feed on heterotrophs such as animals are known as secondary consumers. Secondary consumers are a type of carnivore, but there are also tertiary consumers eating these carnivores, quartary consumers eating them, and so forth. Because only a fraction of energy is passed on to the next level, this hierarchy of predation must end somewhere, and very seldom goes higher than five or six levels, and may go only as high as three trophic levels (for example, a lion that preys upon large herbivores such as wildebeest which in turn eat grasses). A predator at the top of any food chain (that is, one that is preyed upon by no organism) is called an apex predator; examples include the orca, sperm whale, anaconda, Komodo dragon, tiger, lion, tiger shark, Nile crocodile, and most eagles — and even omnivorous humans and grizzly bears. An apex predator in one environment may not retain this position as a top predator if introduced to another habitat, such as a dog among alligators or a snapping turtle among jaguars; a predatory species introduced into an area where it faces no predators, such as a domestic cat or a dog in some insular environments, can become an apex predator by default.

Many organisms (of which humans are prime examples) eat from multiple levels of the food chain and thus make this classification problematic. A carnivore may eat both secondary and tertiary consumers, and its prey may itself be difficult to classify for similar reasons. Organisms showing both carnivory and herbivory are known as omnivores. Even herbivores such as the giant pandamay supplement their diet with meat. Scavenging of carrion provides a significant part of the diet of some of the most fearsome predators. Carnivorous plants would be very difficult to fit into this classification, producing their own food but also digesting anything that they may trap. Organisms which eat detritivores or parasites would also be difficult to classify by such a scheme.

Predation as competition

An alternative view offered by Richard Dawkins is of predation as a form of competition: the genes of both the predator and prey are competing for the body (or ‘survival machine’) of the prey organism. This is best understood in the context of the gene centered view of evolution. Another manner in which predation and competition are connected is throughout intraguild predation. Intraguild predators are those that kill and eat other predators of different species at the same trophic level, and thus that are potential competitors.

Competition, Predation and Symbiosis video.

POPULATION DYNAMICS

It is fairly clear that predators tend to lower the survival and fecundity of their prey, but on a higher level of organization, populations of predator and prey species also interact. It is obvious that predators depend on prey for survival, and this is reflected in predator populations being affected by changes in prey populations. It is not so obvious, however, that predators affect prey populations. Eating a prey organism may simply make room for another if the prey population is approaching its carrying capacity.

The population dynamics of predator-prey interactions can be modelled using the Lotka–Volterra equations. These provide a mathematical model for the cycling of predator and prey populations. Predators tend to select young, weak, and ill individuals.

HUMANS AND PREDATION

As predators

Humans are omnivorous. They hunt and trap animals using weapons and tools like snares, clubs, spears, fishing gear, firearms to boats and motor vehicles. Humans even use other predatory species, (such as dogs, cormorants, and falcons) in hunting and fishing; some people even enlist such non-predatory beasts, like horses, camels, and elephants in getting approaches to prey.

Humans have reshaped huge expanses of the world as ranges and farms for the raising of livestock, poultry, and fish to be eaten as meat. However, it can be debated whether or not harvesting livestock fits strictly in the definition of predation.

Human raising and eating of livestock is part of agriculture, and involves the feeding of and caring for animals, followed by their being slaughtered with an appropriate tool, cutting up, and cooking. In many cultures, animals are hunted or farmed by specialists (such as ranchers or fishermen), brought to a marketplace, and sold in pieces to the people who actually consume the meat.

 

Re love ution